Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PeerJ ; 11: e15298, 2023.
Article in English | MEDLINE | ID: covidwho-2317085

ABSTRACT

Background: One of the measures for controlling the coronavirus disease 2019 (COVID-19) pandemic was the mass closure of gyms. This measure leads us to determine the differences between indoor and outdoor air quality. That is why the objective of this study was to analyse the indoor air quality of a sports centre catering to small groups and rehabilitation. Methods: The study was conducted in a single training centre, where 26 measurements were taken in two spaces (indoors and outdoors). The air quality index, temperature, relative humidity, total volatile compounds, carbon monoxide, ozone, formaldehyde, carbon dioxide, and particulate matter were measured indoors and outdoors using the same protocol and equipment. These measurements were taken twice, once in the morning and once in the afternoon, with all measurements made at the same time, 10 am and 6 pm, respectively. Additionally, four determinations of each variable were collected during each shift, and the number of people who had trained in the room and the number of trainers were counted. Results: In the different variables analysed, the results show that CO2 and RH levels are higher indoors than outdoors in both measurement shifts. Temperatures are higher outside than inside and, in the evening, than in the morning. TVOC, AQI and PM show less variation, although they are higher outdoors in the morning. CO is highest indoors. HCHO levels are almost negligible and do not vary significantly, except for a slight increase in the afternoon outside. Ozone levels are not significant. All the variables showed practically perfect reliability in all the measurements, except for ozone measured outside in the morning. On the other hand, the variables exhibit variations between indoors and outdoors during the morning and afternoon, except for the three types of PM. Also, the data show that all the main variables measured inside the sports training centre are similar between morning and afternoon. However, outside, temperature, relative humidity and HCHO levels show significant differences between morning and afternoon while no differences are observed for the other variables. Conclusion: The indoor air quality of the training centre assessed was good and met current regulations; some of its components even exhibited better levels than fresh air. This article is the first to measure indoor air quality in a sports training centre catering to rehabilitation and small groups.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Ozone , Humans , Air Pollution, Indoor/analysis , Air Pollutants/adverse effects , Reproducibility of Results , COVID-19/epidemiology , Ozone/analysis
2.
Biology (Basel) ; 10(10)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1463548

ABSTRACT

In response to the current state of the COVID-19 pandemic, healthcare providers are using common surgical masks and filtering respirators in conjunction with the presence of facial hair, which could lead to a large number of particles passing into their respiratory system. The purpose of this study was to determine the fit factor effectiveness of filtering respirators and surgical masks in bearded versus non-bearded healthcare providers. A controlled randomized clinical trial (NCT04391010) was carried out, analyzing a sample of 63 healthcare providers. The fit factors of surgical masks and FFP3 filtering respirators for healthcare providers with (n = 32) and without (n = 31) facial hair were compared. Fit factors were measured during an exercises protocol in which healthcare providers wore surgical masks and FFP3 filtering respirators. Surgical mask fit factor comparisons did not show significant differences (p > 0.05) between healthcare providers with and without facial hair. In contrast, filtering respirator fit factor comparisons showed statistically significant differences (p < 0.01) between both groups, indicating that healthcare providers with facial hair showed lower fit factor scores, which implies a worse fit factor with respect to healthcare providers without facial hair. The fit factor effectiveness of filtering respirators was reduced in healthcare providers with facial hair. The authors of this paper encourage healthcare providers to trim their beards during filtering respirator use or wear full-mask filtering facepiece respirators, especially during the COVID-19 pandemic.

3.
Nutrients ; 13(2)2021 Jan 20.
Article in English | MEDLINE | ID: covidwho-1094257

ABSTRACT

Worldwide, the burden of musculoskeletal disorders is increasing with great variations between-countries, which makes it difficult for policymakers to provide resources and adequate interventions in order to provide for their appropriate management [...].


Subject(s)
Diet , Dietary Supplements , Musculoskeletal Diseases , Nutrients , Animals , Biomarkers/analysis , Humans , Musculoskeletal Diseases/diagnosis , Musculoskeletal Diseases/metabolism , Musculoskeletal Diseases/physiopathology , Musculoskeletal Diseases/therapy , Nutritional Status
SELECTION OF CITATIONS
SEARCH DETAIL